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Abstract— Since the number of hotspot patterns detected

on a layout using machine learning technique is very large, it

takes designers a lot of time to classify these hotspot patterns

for subsequent modification. These hotspot patterns are diverse

and complex in shape. Therefore, we propose a density-based

hotspot pattern clustering approach to classify these hotspot

patterns into groups, which extracts the density feature of

hotspot patterns while considering the shifted and distorted

polygons on hotspot patterns. Experimental results show that

our approach can classify the hotspot patterns more efficiently

than SIFT method with similar results in each group.

I. Introduction

With the advance of integrated circuit fabrication, the feature
size of transistors becomes smaller such that the layout is more
complex. Although the full layout of a design has passed the design
rule check (DRC) prior to manufacturing, the fabricated chip may
be still deformed in some regions. These distortions, which are called
hotspot patterns of a layout, may even become yield killers to the
manufacturing process. The root causes of hotspot patterns on the
layout are quite complicated and hotspot patterns seem to occur
randomly or irregularly. However, these still exist certain similarities
implicitly among hotspot patterns. Since it is difficult to find out
the rules of the hotspot patterns manually, many previous works
[6][8][10][12][13] proposed methods to detect hotspot patterns.

Hotspot pattern identification detects specific patterns that are
inappropriate to the manufacturing process on the layout. However,
the hotspot patterns on a layout are various and the amount of them
is enormous such that dealing with each hotspot pattern is trouble-
some for designers. Thus, it is better to classify these hotspot pat-
terns into different groups before dealing with each group of hotspot
patterns.

Some previous works [3][4] focused on finding repeated patterns
or similar patterns on a layout. The repeated patterns are the same
patterns that appear repeatedly on the layout, whereas the similar
patterns occur in two situations. The first situation is that the
polygons of a pattern distort in shape. The second situation is
that the polygons of a pattern shift in location. But the previous
work [3] assumes these two situations cannot occur simultaneously,
though polygon shapes and locations are usually changed at the
same time. For example in Fig. 1, six hotspot patterns are similar
and clustered into the same group. If we limit that polygons of
the hotspot patterns in each group cannot be distorted and shifted
simultaneously, these similar hotspot patterns will not be clustered
together.

The previous work [14] proposed a method to solve this classifica-
tion problem. It used the SIFT [9] algorithm to extract important
characteristics of each hotspot pattern. Similar hotspot patterns
with distorted or shifted polygons turn out to have similar charac-
teristics. However, the method needed a large amount of time to
classify the hotspot patterns.

In this work, we propose a density-based approach, which effi-
ciently classifies similar hotspot patterns into a group. To clas-
sify these hotspot patterns, we extract the density feature of each
hotspot pattern. Specifically, we cut an image into grids and ex-
tract the density of each grid. Experimental results show that our
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Fig. 1. Similar hotspot patterns in a group.

approach classifies hotspot patterns into several groups more effi-
ciently with similar results.

II. Background

A. Hotspot Pattern

In the manufacturing process, hotspot patterns are those easily
deformed patterns on a layout. In this work, all the hotspot patterns
have been converted to grayscale images as shown in Fig. 1. A
hotspot pattern has n × n pixels, where n is the width and height
of a hotspot pattern. The intensity of each pixel is either 0 or 255,
which means that only black (0) or white (255) are on the hotspot
pattern. The black regions on an image represent polygons of the
hotspot pattern.

B. Density of a Grid

A hotspot pattern is cut into pieces with m×m grids, where m
is an integer greater than one. The density is calculated as the area
ratio of the black region and a grid. Thus, we can obtain a density
feature matrix with m2 elements by calculating area ratios of all the
grids.

For example, a given hotspot pattern is shown in Fig. 2(a). We
cut the hotspot pattern by imposing 4×4 grids as shown in Fig. 2(b).
Then, we calculate the area ratio in each grid. The 4 × 4 density
feature matrix with 16 elements is shown in Fig. 2(c), which can be
flattened from left to right and top to bottom as a density feature
vector as shown in Fig. 2(d).

By calculating the density of each grid, we have the location
information of polygons on each hotspot pattern. The precision of
this information depends on the size of the grid. The smaller the
grid size is, the closer it will be to the origin hotspot pattern.

C. Center of Gravity of a Polygon

Since two similar hotspot patterns may contain the same but
shifted polygons, we cannot directly use their density feature vectors
for comparison. We propose to align two hotspot patterns with
respect to their centers of gravity before calculating their density
feature vectors. Hence, we first introduce how to compute the center
of gravity of a polygon in this subsection. The center of gravity is
related to the concept of image moments [7].

As in a grayscale polygon, the moment of order (p + q)th of a
polygon can be written as:

mpq =
∑
x

∑
y

xpyqf(x, y)
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Fig. 2. Extraction of the density feature. (a) A grayscale hotspot pattern.

(b) 4 × 4 grids. (c) The density feature matrix with 42 elements. (d) The

flattened density feature vector with 42 elements.

where f(x, y) is the pixel’s intensity in the (x, y) coordinate of a
polygon on a hotspot pattern. When p = q = 0, the equation
becomes

m00 =
∑
x

∑
y

f(x, y)

which accumulates the intensity of each pixel of a polygon.
For example, given a grayscale hotspot pattern as shown in Fig.

3(a). Since the intensities of the polygons are all 0s (black), we
use a bitwise-NOT operations to exchange the intensity of black (0)
and white (255) region of the hotspot pattern. The color-exchanged
hotspot pattern is shown in Fig. 3(b). Note that this exchange
is just for calculating the center of gravity. For example, for the
largest polygon in Fig. 3(c), its total intensity m00 is calculated as
13064× 255, where 13064 can be interpreted as its area.

The coordinates (xc, yc) of the center of gravity for a polygon in
a color-exchanged hotspot pattern can be calculated by using m00,
m10, and m01 as follows:

xc =

∑
x

∑
y xf(x, y)∑

x

∑
y f(x, y)

=
m10

m00

yc =

∑
x

∑
y yf(x, y)∑

x

∑
y f(x, y)

=
m01

m00

In this example, the coordinate of the center of gravity for the largest
polygon is (128, 81), which is shown in Fig. 3(d).

III. Proposed Approach

A. Density Feature Vector of a Hotspot Pattern

Using the method mentioned in the last section, we can obtain
the center of gravity of each polygon on a hotspot pattern. We next
compute the center of gravity of the hotspot pattern, which is used
to align different hotspot patterns.

By using the following two equations, we can obtain the coordi-
nate (Hx, Hy) of center of gravity of a hotspot pattern.

Hx =

∑
p xcm00∑
p m00

Hy =

∑
p ycm00∑
p m00

where p represents a polygon on the hotspot pattern, and m00 is
the total intensity of a polygon p.

For example, after obtaining the center of gravity of each polygon
on the hotspot pattern as shown in Fig. 4(a), we calculate the cen-
ter of gravity of the hotspot pattern. The (m00, (xc, yc)) of the six
polygons on the hotspot pattern is: (912× 255, (12, 19)), (13064×
255, (128, 81)), (3715 × 255, (169, 179)), (4770 ×

Fig. 3. The center of gravity of the hotspot pattern. (a) A 300 × 300
grayscale hotspot pattern. (b) The color-exchanged hotspot pattern. (c)
The area of the largest polygon is 13064. (d) The point (128, 81) is the
center of gravity of the largest polygon.

255, (82, 226)), (1344 × 255, (21, 274)), (3019 ×
255, (166, 269)). By using the above two equations, Hx equals
255×((912×12+13064×128+3715×169+4770×82+1344×21+3019×166))

255×(912+13064+3715+4770+1344+3019)
,

and Hy equals
255×((912×19+13064×81+3715×179+4770×226+1344×274+3019×269))

255×(912+13064+3715+4770+1344+3019)
.

We round the Hx and Hy to obtain an integer coordinate. Hence,
the center of gravity of the hotspot pattern is (120, 149) as shown
in the original hotspot pattern of Fig. 4(b).

Fig. 4. Center of gravity of the hotspot pattern.(a) The center of gravity of
each polygon on a hotspot pattern. (b) The star point (120, 149) is the
center of gravity for the hotspot pattern.

Then, we compute the density feature vector of a hotspot pattern
with respect to its center of gravity. This is because the center of
gravity of a hotspot pattern is not always at the center of hotspot
pattern. We pad the hotspot pattern with white background for
extending the boundary of the hotspot pattern, and impose the
m × m grids on it with respect to its center of gravity. Hence, we
can obtain the density feature vector of the hotspot pattern, which
considers the effect of polygon shift on a hotspot pattern.

For example, given a hotspot pattern with its center of gravity
in Fig. 5(a), we pad the hotspot pattern with white background as
shown in Fig. 5(b). Then, we can obtain the density feature vector
of the hotspot pattern from Fig. 5(c).

Next, we use an example to demonstrate the effectiveness of the
proposed approach about the center of gravity alignment. Assume
that we have three hotspot patterns in Fig. 6. Figs. 6(a) and
6(b) are similar hotspot patterns with slightly polygon shift and
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Fig. 5. Density feature vector computation. (a) The star point is the
coordinate of center of gravity of a hotspot pattern. (b) The padded hotspot
pattern with its center of gravity. (c) Imposing m × m grids for computing
the density feature vector.

distortion. Figs. 7(a), 7(b) and 7(c) show their density feature
vectors using 4×4 grids without considering their centers of gravity.
We calculate the difference of two density feature vectors pairwise
by accumulating the difference in each dimension as follows:

n∑
i=1

|Ai −Bi|

where Ai and Bi are the ith element of two density feature vectors
A, B with n dimensions.

If we directly compare these density feature vectors pairwise, their
differences between (a)&(b), (a)&(c), and (b)&(c) are 2.97, 2.78,
and 3.53, respectively, which indicate that Figs. 6(a) and 6(c) are
more similar. Figs. 7(d), 7(e) and 7(f) show the density feature
vectors with considering the center of gravity of the hotspot pattern
instead. If we compare these density feature vectors pairwise, their
differences between (d)&(e), (d)&(f), and (e)&(f) are 0.06, 3.38, and
3.34, respectively. Although Figs. 6(a) and 6(b) have distorted and
shifted polygons, our approach successfully identifies that they are
similar hotspot patterns.

Fig. 6. Three hotspot patterns.

B. Rotational Hotspot Pattern Clustering

Some existing hotspot patterns that are similar to other’s after
rotation should be clustered in the same group as well. However,
the density feature vectors obtained from last subsection naturally
contains the location information of polygons on a hotspot pattern,
which leads to the rotational hotspot patterns have quite different
density feature vectors. Thus, we propose a method to deal with
this issue in this subsection. We first obtain four hotspot patterns
from the original hotspot pattern H1 by rotating 90°, 180°, 270°, and

Fig. 7. The density feature vectors of Fig. 6 w/wo considering their centers
of gravity.

360°, which can be represented by four density feature vectors. As
a result, a hotspot pattern has four corresponding density feature
vectors. When we have another hotspot pattern H2, which is the
hotspot pattern ofH1, the four density feature vectors ofH2 are one-
to-one mapping to the four density feature vectors of H1. Hence,
we can use an m× 1 vector, where m = 4× k, and k is the number
of groups in the classification process, for recording the mapping of
density feature vectors of a hotspot pattern.

For example, assume that we have three hotspot patterns as
shown in Fig. 8(a). We observe that the first two hotspot pat-
terns are hotspot patterns to each other. We rotate these hotspot
patterns 90°, 180°, 270°, and 360°as shown in Fig. 8(b). A hotspot
pattern corresponds to the four density feature vectors. Assume
that we want to classify these three hotspot patterns into k = 2
groups, then m = 4 × k = 8, which means that we use an 8 × 1
vector to record the mapping as shown in Fig. 8(c). As a result,
the rotational hotspot patterns have the same 8×1 vector such that
they will be put in one group in the process later.

Fig. 8. Rotational Hotspot Pattern Clustering. (a) Three hotspot patterns.
(b) Three hotspot patterns by rotating 90°, 180°, 270°, and 360°. (c) The
8 × 1 vector for recording the mapping.

We obtain the m × 1 vector representing each hotspot pattern
using the rotational hotspot pattern clustering. Then, the K-means
algorithm clusters the m × 1 vectors of all the hotspot patterns
into k groups. After that, the hotspot pattern in a group that has
the minimum difference among its m × 1 vector and other hotspot
patterns’ m×1 vectors in the group is selected as the representative
hotspot pattern.

For example, given three hotspot patterns in Fig. 8(a) and their
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8× 1 vectors as shown in Fig. 8(c). We use the 8× 1 vector to rep-
resent each hotspot pattern and cluster the three hotspot patterns
into two groups. The first two hotspot patterns will be clustered
to the same group and the last hotspot pattern will be in the other
group.

C. Overall Flow

Fig. 9 shows the overall flow of the proposed approach. We
load given hotspot patterns and compute the center of gravity of
each hotspot pattern to align all hotspot patterns. We obtain the
density feature vector of each hotspot pattern with their centers of
gravity. In the hotspot pattern clustering, we rotate the hotspot
pattern 90°, 180°, 270°, and 360°and obtain the four corresponding
density feature vectors. We then record the one-to-one mapping of
the four density feature vectors in the m × 1 vector. The m × 1
vectors are used in the hotspot pattern clustering.

Fig. 9. Overall flow of the proposed layout hotspot pattern clustering.

IV. Experimental Results

The proposed density-based hotspot pattern clustering approach
was implemented in Python language with Scikit-learn package and
OpenCV. The benchmarks are two datasets from a semiconductor
manufacturing company, which include necking1 and short2. The
experiments are conducted on Linux 3.10.0 platform with Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30GHz and 511GB RAM.

We cluster the dataset into 20, 40, 60, and 80 groups and accu-
mulate the total differences of hotspot patterns in each group in our
experiments. Considering that a group of hotspot patterns will con-
tain rotated hotspot patterns, we rotate the representative hotspot
pattern of each group 90°, 180°and 270°, and 360°as shown in Fig.
10.

Fig. 10. The representative hotspot pattern of a group and the four rotated
representative hotspot patterns of a group. (a) A representative hotspot
pattern of a group. (b) Four representative hotspot patterns of a group.

The total differences in a group are calculated by accumulating
the minimum difference between each hotspot pattern and its four
rotated representative hotspot patterns.

The minimum difference between two hotspot patterns can be
obtained by overlapping two hotspot patterns from the top left to
the bottom right. During the movement for overlapping, the differ-
ence of two hotspot patterns can be calculated by XOR operation

between the hotspot pattern and the representative hotspot pat-
tern. The minimum difference between two hotspot patterns is the
minimum difference obtained in the overlapping process.

Necking1 dataset has 9354 hotspot patterns and short2 dataset
has 12998 hotspot patterns. The total differences and the CPU time
of clustering these datasets are shown in TABLEs. I ∼ II.

The experimental results show that our approach is more efficient
than [14], and the total differences are very close to [14].

TABLE I
Classification results of necking1 dataset.

#groups Total Differences (%) CPU (s)

[14] Ours Ours - [14] [14] Ours Speedup

20 17.21 20.30 3.09 1356.57 179.41 7.56

40 16.87 18.28 1.92 1236.83 310.91 3.98

60 15.62 17.06 1.59 1938.35 410.64 4.72

80 14.96 15.92 0.96 845 356.9 2.37

TABLE II
Classification results of short2 dataset.

#groups Total Differences (%) CPU (s)

[14] Ours Ours - [14] [14] Ours Speedup

20 23.73 22.44 -1.29 1436.96 260.55 5.52

40 18.80 19.09 0.29 1612.42 334.54 4.82

60 15.87 17.08 1.21 1700.50 430.24 3.95

80 14.26 15.45 1.19 1829.55 468.02 3.91

V. Conclusion

In this paper, we propose an efficient density-based clustering
approach, which classifies hotspot patterns using their density fea-
ture vectors. The proposed density feature extraction deals with
the polygon shifted problem of similar hotspot patterns using the
center of gravity. The experimental results show that our approach
classifies the hotspot patterns more efficiently with similar results
as compared to the previous work.

References

[1] Bradski, Gary. “The openCV library.” Dr. Dobb’s Journal: Software Tools
for the Professional Programmer 25.11 (2000): 120-123.

[2] Buitinck et al., “API design for machine learning software: experiences
from the scikit-learn project,” ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, 2013.

[3] Chang, Wei-Chun, et al.,“iClaire: A Fast and General Layout Pattern
Classification Algorithm” Proceedings of the 54th Annual Design Automa-
tion Conference 2017, 2017.

[4] Jingsong Chen, James Shiely, Evangeline F. Y. Young, “Fast detec-
tion of largest repeating layout pattern,” Design-Process-Technology Co-
optimization for Manufacturability XIII., vol. 10962. SPIE, 2019.

[5] Charles Elkan, “Using the Triangle Inequality to Accelerate K-Means,”
ICML’03: Proceedings of the Twentieth International Conference on Inter-
national Conference on Machine Learning, pp. 147-153, 2003.

[6] Tianyang Gai, Tong Qu, Xiaojing Su, Shuhan Wang, Lisong Dong, Libin
Zhang, Rui Chen, Yajuan Su, Yayi Wei, Tianchun Ye, “Multi-level layout
hotspot detection based on multi-classification with deep learning,” Proc.
SPIE 11614, Design-Process-Technology Co-optimization XV, 116140W (22
February 2021); https://doi.org/10.1117/12.2583726.

[7] Gonzalez, R.C. and Woods, R.E., Digital Image Processing. Pearson Edu-
cation. ISBN:9781292223070

[8] J. Jiang et al., “Reducing Systematic Defects using Calibre Wafer De-
fect Engineering and Machine Learning Solutions,” 2020 International
Workshop on Advanced Patterning Solutions (IWAPS), 2020, pp. 1-3, doi:
10.1109/IWAPS51164.2020.9286791.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the Seventh IEEE International Conference on Computer Vi-
sion, 1999, pp. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410.

[10] Yuansheng Ma, Feng Wang, Qian Xie, Le Hong, Joerg Mellmann,
Yuyang Sun, Shao Wen Gao, Sonal Singh, Panneerselvam Venkatacha-
lam, James Word, “Machine learning based wafer defect detection,” Proc.
SPIE 10962, Design-Process-Technology Co-optimization for Manufacturabil-
ity XIII, 1096208 (20 March 2019)); https://doi.org/10.1117/12.2513232.

[11] Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[12] H. -C. Shao et al., “From IC Layout to Die Photograph: A CNN-Based
Data-Driven Approach,” in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 40, no. 5, pp. 957-970, May 2021.

[13] W. Wen, J. Li, S. Lin, J. Chen and S. Chang, “A fuzzy-matching model
with grid reduction for lithography hotspot detection.,” in IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 11, pp. 1671-1680, Nov. 2014.

[14] An In-house tool in a semiconductor manufacturing company.

4

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 12,2023 at 02:24:47 UTC from IEEE Xplore.  Restrictions apply. 


